Benutzer: Gast  Login
Titel:

Open Access Data and Deep Learning for Cardiac Device Identification on Standard DICOM and Smartphone-based Chest Radiographs.

Dokumenttyp:
Journal Article
Autor(en):
Busch, Felix; Bressem, Keno K; Suwalski, Phillip; Hoffmann, Lena; Niehues, Stefan M; Poddubnyy, Denis; Makowski, Marcus R; Aerts, Hugo J W L; Zhukov, Andrei; Adams, Lisa C
Abstract:
Purpose To develop and evaluate a publicly available deep learning model for segmenting and classifying cardiac implantable electronic devices (CIEDs) on Digital Imaging and Communications in Medicine (DICOM) and smartphone-based chest radiographs. Materials and Methods This institutional review board-approved retrospective study included patients with implantable pacemakers, cardioverter defibrillators, cardiac resynchronization therapy devices, and cardiac monitors who underwent chest radiogra...     »
Zeitschriftentitel:
Radiol Artif Intell
Jahr:
2024
Band / Volume:
6
Heft / Issue:
5
Volltext / DOI:
doi:10.1148/ryai.230502
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/39017033
TUM Einrichtung:
Institut für Diagnostische und Interventionelle Radiologie (Prof. Makowski)
 BibTeX