User: Guest  Login
Title:

A multi-institutional meningioma MRI dataset for automated multi-sequence image segmentation.

Document type:
Article; Journal Article; Dataset
Author(s):
LaBella, Dominic; Khanna, Omaditya; McBurney-Lin, Shan; Mclean, Ryan; Nedelec, Pierre; Rashid, Arif S; Tahon, Nourel Hoda; Altes, Talissa; Baid, Ujjwal; Bhalerao, Radhika; Dhemesh, Yaseen; Floyd, Scott; Godfrey, Devon; Hilal, Fathi; Janas, Anastasia; Kazerooni, Anahita; Kent, Collin; Kirkpatrick, John; Kofler, Florian; Leu, Kevin; Maleki, Nazanin; Menze, Bjoern; Pajot, Maxence; Reitman, Zachary J; Rudie, Jeffrey D; Saluja, Rachit; Velichko, Yury; Wang, Chunhao; Warman, Pranav I; Sollmann, Nico;...     »
Abstract:
Meningiomas are the most common primary intracranial tumors and can be associated with significant morbidity and mortality. Radiologists, neurosurgeons, neuro-oncologists, and radiation oncologists rely on brain MRI for diagnosis, treatment planning, and longitudinal treatment monitoring. However, automated, objective, and quantitative tools for non-invasive assessment of meningiomas on multi-sequence MR images are not available. Here we present the BraTS Pre-operative Meningioma Dataset, as the...     »
Journal title abbreviation:
Sci Data
Year:
2024
Journal volume:
11
Journal issue:
1
Fulltext / DOI:
doi:10.1038/s41597-024-03350-9
Pubmed ID:
http://view.ncbi.nlm.nih.gov/pubmed/38750041
TUM Institution:
1371; 1404; Professur für Neuroradiologie (Prof. Zimmer)
 BibTeX