User: Guest  Login
Title:

MedShapeNet - a large-scale dataset of 3D medical shapes for computer vision.

Document type:
Journal Article
Author(s):
Li, Jianning; Zhou, Zongwei; Yang, Jiancheng; Pepe, Antonio; Gsaxner, Christina; Luijten, Gijs; Qu, Chongyu; Zhang, Tiezheng; Chen, Xiaoxi; Li, Wenxuan; Wodzinski, Marek; Friedrich, Paul; Xie, Kangxian; Jin, Yuan; Ambigapathy, Narmada; Nasca, Enrico; Solak, Naida; Melito, Gian Marco; Vu, Viet Duc; Memon, Afaque R; Schlachta, Christopher; De Ribaupierre, Sandrine; Patel, Rajnikant; Eagleson, Roy; Chen, Xiaojun; Mächler, Heinrich; Kirschke, Jan Stefan; de la Rosa, Ezequiel; Christ, Patrick Ferdina...     »
Abstract:
OBJECTIVES: The shape is commonly used to describe the objects. State-of-the-art algorithms in medical imaging are predominantly diverging from computer vision, where voxel grids, meshes, point clouds, and implicit surface models are used. This is seen from the growing popularity of ShapeNet (51,300 models) and Princeton ModelNet (127,915 models). However, a large collection of anatomical shapes (e.g., bones, organs, vessels) and 3D models of surgical instruments is missing. METHODS: We present...     »
Journal title abbreviation:
Biomed Tech (Berl)
Year:
2025
Journal volume:
70
Journal issue:
1
Pages contribution:
71-90
Fulltext / DOI:
doi:10.1515/bmt-2024-0396
Pubmed ID:
http://view.ncbi.nlm.nih.gov/pubmed/39733351
Print-ISSN:
0013-5585
TUM Institution:
165; Professur für Neuroradiologie (Prof. Zimmer)
 BibTeX