Synthetic T2-weighted fat sat based on a generative adversarial network shows potential for scan time reduction in spine imaging in a multicenter test dataset
Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Schlaeger, Sarah ; Drummer, Katharina ; El Husseini, Malek ; Kofler, Florian ; Sollmann, Nico ; Schramm, Severin ; Zimmer, Claus ; Wiestler, Benedikt ; Kirschke, Jan S.
Stichworte:
Imaging Informatics and Artificial Intelligence ; Magnetic resonance imaging ; Spine ; Artificial intelligence