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Abstract
Objectives  T2-weighted (w) fat sat (fs) sequences, which are important in spine MRI, require a significant amount of scan 
time. Generative adversarial networks (GANs) can generate synthetic T2-w fs images. We evaluated the potential of syn-
thetic T2-w fs images by comparing them to their true counterpart regarding image and fat saturation quality, and diagnostic 
agreement in a heterogenous, multicenter dataset.
Methods  A GAN was used to synthesize T2-w fs from T1- and non-fs T2-w. The training dataset comprised scans of 73 
patients from two scanners, and the test dataset, scans of 101 patients from 38 multicenter scanners. Apparent signal- and 
contrast-to-noise ratios (aSNR/aCNR) were measured in true and synthetic T2-w fs. Two neuroradiologists graded image 
(5-point scale) and fat saturation quality (3-point scale). To evaluate whether the T2-w fs images are indistinguishable, a 
Turing test was performed by eleven neuroradiologists. Six pathologies were graded on the synthetic protocol (with synthetic 
T2-w fs) and the original protocol (with true T2-w fs) by the two neuroradiologists.
Results  aSNR and aCNR were not significantly different between the synthetic and true T2-w fs images. Subjective image 
quality was graded higher for synthetic T2-w fs (p = 0.023). In the Turing test, synthetic and true T2-w fs could not be dis-
tinguished from each other. The intermethod agreement between synthetic and original protocol ranged from substantial to 
almost perfect agreement for the evaluated pathologies.
Discussion  The synthetic T2-w fs might replace a physical T2-w fs. Our approach validated on a challenging, multicenter 
dataset is highly generalizable and allows for shorter scan protocols.
Key Points 
• Generative adversarial networks can be used to generate synthetic T2-weighted fat sat images from T1- and non-fat sat  
   T2-weighted images of the spine.
• The synthetic T2-weighted fat sat images might replace a physically acquired T2-weighted fat sat showing a better image  
  quality and excellent diagnostic agreement with the true T2-weighted fat images.
• The present approach validated on a challenging, multicenter dataset is highly generalizable and allows for significantly  
   shorter scan protocols.
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Abbreviations and acronyms
aCNR	� Apparent contrast-to-noise ratio
DIR	� Double inversion recovery
DL	� Deep learning
fs	� Fat sat
FOV	� Field of view
GAN	� Generative adversarial network
GT	� Ground truth
GUI	� Graphical user interface
ĸ	� Kappa
MRI	� Magnetic resonance imaging
ROI	� Region of interest
STIR	� Short tau inversion recovery
aSNR	� apparent signal-to-noise ratio
TSE	� Turbo spin echo
w	� Weighted

Introduction

Magnetic resonance imagining (MRI) plays an outstanding role 
in the assessment of spine pathologies due to its high soft tissue 
contrast, its non-invasiveness, the lack of radiation exposure, and 
the possibility for a multiparametric image acquisition [1, 2].

Routinely, sagittal T1-weighted (w) sequences (− / + con-
trast agent) and T2-w sequences are acquired [2]. Addition-
ally, sagittal T2-w sequences combined with fat suppression 
or separation techniques have become an important part of 
spine imaging [2]. The removal of the contribution of the 
fat signal to the overall MR signal enhances contrast resolu-
tion, improves assessment of pathologies characterized by 
changes of the fluid concentration, reduces artifacts, and 
facilitates the decision of whether additional contrast agent 
is needed [2–14]. Particularly for the diagnosis of acute 
pathologies such as inflammation or acute vertebral frac-
tures, T2-w fs images are essential [15].

However, acquiring an additional T2-w fat sat (fs) 
sequence requires longer scan protocols, which decreases 
the MR throughput [16]. Prolonged acquisition times reduce 
patient comfort which could contribute to motion artifacts in 
imaging data. Additionally, spectral fat saturation techniques 
are particularly prone to artifacts caused by field inhomoge-
neities, e.g., around metal implants [4].

Parallel to advancement of MRI acceleration techniques 
[17, 18], recently, virtually generated MR images offer a 
promising approach for scan time reduction, as the physical 
acquisition of particular sequences is no longer necessary. 
Generative adversarial networks (GANs) based on a deep-
learning (DL) architecture can be used to generate such syn-
thetic images from different MR contrasts as input [19–23]. 
The iterative interaction of two networks, one generating 
images and one learning to differentiate between synthetic 
and true images [24, 25], has already been used on MRI data 

from a variety of anatomical regions [26–28]. In the spine, 
GANs can generate T2-fs images from conventional T1-w 
and non-fs T2-w images [15, 29]. Thereby, apart from scan 
time acceleration, the synthetic T2-w fs images might be 
less prone to artifacts, as the synthetic images are based on 
technically stable T1-w and non-fs T2-w images as input.

To foster a widespread implementation of GAN-based 
T2-w fs images in research and clinical spine imaging, syn-
thetic images need to pass a validation by radiologists’ percep-
tion and the GAN framework has to prove external validity.

Hence, our work aims to investigate the diagnostic perfor-
mance of a sagittal, GAN-based T2-w fs of the spine gener-
ated from heterogenous, multicenter T1-w and T2-w images. 
We hypothesized that synthetic T2-w fs images represent 
a good alternative to true T2-w fs images consequently 
allowing shorter scan protocols. Therefore, synthetic T2-w 
fs images were compared to their true counterparts regard-
ing (1) image quality (quantitatively, qualitatively and with 
a visual Turing test) and fs quality (qualitatively) and (2) 
diagnostic agreement (qualitatively).

Methods

Magnetic resonance imaging data

Subject population

We retrospectively identified 201 patients with sagittal T1-w 
turbo spin echo (TSE), T2-w TSE, and T2-w TSE fs images 
of the spine. The study design was approved by the local 
ethics commission. Informed consent was waived due to the 
retrospective character.

Training data

Training data for the GAN was retrospectively retrieved 
from 160 sagittal T1-w, T2-w, and T2-w fs spine images of 
96 patients. Due to metal artifacts or poor image quality, 31 
scans were excluded (only in the training data) (Fig. 1). All 
scans originated from two in-house 3 T scanners (Ingenia 
and Achieva d-stream, Philips Healthcare) using a similar 
protocol. Sequence parameters are given in Table SM1.

Testing data

We retrospectively identified 105 MRI datasets of 105 
patients consisting of sagittal T1-w, T2-w, and T2-w fs scans. 
Starting with date 2020/10/01 and going backward, all sub-
sequent spine scans uploaded to the PACS were included up 
to a number of 105 datasets. Thereby, in-house scans (n = 55) 
and scans from other institutions (n = 50) being imported for 
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clinical review were included. Four datasets were excluded 
due to missing true T2-w fs images or data processing errors 
during export (Fig. 1). Notably, artifacts, e.g., due to foreign 
material or poor image quality, did not represent an exclusion 
criterion to assess the performance of the GAN also in these 
challenging situations. The remaining 101 datasets originated 
from n = 38 scanners from three vendors (Philips Healthcare; 
Siemens Healthineers; GE Healthcare). Figure  2 shows 
images of true and synthetic T2-w fs from different scanner 
hardware. n = 41 datasets were acquired at 1.5 T, n = 60 data-
sets at 3 T. Slice thickness ranked from 2.2 to 5.5 mm; field 
of view (FOV) x/y/z dimensions ranked from 48/200/30 mm 
to 420/420/420 mm. The mean/range of sequence parameters 
is given in Table SM1.

In order to account for data origin bias, testing data 
originating from the two 3 T scanners, which were also 
used in the training phase (Ingenia and Achieva d-Stream, 
Philips Healthcare), was excluded in an additional analysis 
resulting in n = 66 remaining datasets. Respective results 
are provided in the supplementary material.

Synthesis of sagittal T2‑w fs images

The GAN for synthesis of sagittal T2-w fs images from 
T1-w and non-fs T2-w images is based on the pix2pix 

architecture by Isola et al. [30] (details are given in SM 
Appendix 1). The artificial generation of one T2-w fs 
dataset takes on average less than 5 min depending on 
the computational power. Most of this time is needed 
for image registration; the image synthesis by the GAN 
takes less than 30 s. A schematic diagram with exemplary 
images of the GAN architecture and the training process 
of image synthesis is shown in Fig. 3. The GAN model 
and one test case can be found in the following reposi-
tory: https://​doi.​org/​10.​6084/​m9.​figsh​are.​16627​576

Evaluation of GAN performance

Objective image quality evaluation

One neuroradiologist with six years of experience in spine 
imaging performed apparent signal- and contrast-to-noise ratio 
(aSNR/aCNR) measurements comparable to the work by Pen-
nig et al. [31] in ten representative datasets of correspond-
ing synthetic and true T2-w fs images (including internal and 
external data). A region of interest (ROI) was manually drawn 
in the same position on synthetic and true T2-w fs images 
in (i) a healthy-appearing vertebral body and (ii) a region of 
bone marrow abnormality. Additionally, a ROI was placed in 
the paraspinal muscles as a reference standard for background 
noise, assuming relatively homogenous muscle tissue and 

Fig. 1   Flow chart describing inclusion and exclusion criteria of training and testing data

https://doi.org/10.6084/m9.figshare.16627576


5885European Radiology (2023) 33:5882–5893	

1 3

therefore relating signal standard deviation mainly to noise. 
The aSNR and aCNR were calculated as follows:

where SI is the signal intensity, and SD is the standard devia-
tion. For each dataset, aSNR and aCNR were calculated.

Subjective image and fat saturation quality evaluation

The 101 test datasets (T1-w, T2-w, synthetic T2-w fs, and true 
T2-w fs images) were investigated by two neuroradiologists 
(reader 1 with six years of experience; reader 2 with three years 
of experience in spine imaging). The expert readers blindly 
graded synthetic and true T2-w fs images regrading image 
quality based on a 5-point scale [16] and fat saturation quality 
based on a 3-point scale by assessing presence of artifacts, 
overall SNR, and image contrast (Table 1 (a)).

(1)aSNR =
SIhealthy vertebral body

SD of SImuscle

(2)aCNR =
(SIbone marrow abnormality − SIhealthy vertebral body)

SD of SImuscle

To assess whether synthetic and true T2-w fs images are indis-
tinguishable, a visual Turing test was performed. From the test-
ing dataset 25 synthetic and 25 true T2-w fs images of the same 
patient, respectively, were presented randomized and blinded to 
eleven neuroradiologists (one to 20 years of experience in spine 
MRI) using a website-based graphical user interface (GUI) [32, 
33]. Participants were obliged to classify the shown image as a 
synthetic or a true T2-w fs. Without learning whether the classifi-
cation was correct or wrong, the subsequent image was presented.

Evaluation of diagnostic agreement

In each of the 101 test datasets, five consecutive vertebral 
segments were defined as ROI based on T1-w, T2-w, and 
true T2-w fs images. Thereby, throughout all datasets cervi-
cal, thoracic and lumbar spine segments were included. Sub-
sequently, the two aforementioned expert readers assessed 
diagnostic agreement of the images by grading six different 
pathologies in the ROI: bone marrow abnormalities, spon-
dylodiscitis expansion, Modic changes, vertebral fractures, 
spinal cord lesions, and paravertebral tissue abnormalities. 
The six named pathologies were chosen, as they are among 

Fig. 2   Exemplary images of true and synthetic T2-w fs from different scanner hardware
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the most common spinal pathologies. Particularly for these 
six pathologies, a sufficient fluid contrast is important for 
assessment and, therefore, the analysis of T2-w fs images is 
of significant diagnostic relevance. Grading scores are given 
in Table 1 (b). The two readers independently graded pathol-
ogies on the synthetic (T1-w, T2-w, and synthetic T2-w fs 
images) and the original protocol (T1-w, T2-w, and true 
T2-w fs images) in a randomized and blinded assessment.

Gold standard definition for accuracy

After completion of the blinded expert readings, a 
ground  truth (GT) grading of the 101 test datasets was 
defined. T1-w, T2-w, and true T2-w fs images were assessed 
in a consensus grading of both expert readers, additionally 
incorporating the information of pre- or follow-up scans, 
other imaging modalities, and clinical information.

Statistical analysis

Statistical analysis was performed with SPSS (version 27.0, 
IBM SPSS Statistics for MacOS, IBM Corp.) and Microsoft 

Excel (2021). A p-value of 0.05 was set as threshold for 
statistical significance.

Significant difference between aSNR and aCNR of syn-
thetic and true T2-w fs images from the ten representative 
datasets was evaluated using the Wilcoxon signed-rank 
test.

Image and fat saturation quality grading of synthetic and 
true T2-w fs was analyzed using descriptive statistics. Sig-
nificant differences between image and fat saturation quality 
grading of synthetic and true T2-w fs were evaluated using 
the Wilcoxon signed-rank test.

The Turing test was analyzed using descriptive statistics. 
Significant difference real condition versus expert grading 
between true and synthetic T2-w fs images was evaluated 
using McNemar’s test.

To evaluate the intermethod agreement of pathology 
assessment based on the synthetic versus the original pro-
tocol, Cohen’s kappa (ĸ) coefficients were calculated [34]. 
Also, the interrater agreement for pathology grading was 
calculated using Cohen’s ĸ coefficients. Significant differ-
ences between Cohen’s ĸ coefficients were evaluated using 
the Wilcoxon signed-rank test.

Fig. 3   Diagram of architecture and training process of the synthe-
sis task. The Generator G uses T1- and T2-w images to generate 
synthetic T2-w fs images. Feedback on the similarity between syn-

thetic T2-w fs and true T2-w fs is offered by the Discriminator D and 
causes modifications in network weightings until the loss of function 
to discriminate between both images is minimal
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For comparison with the gold standard, accuracy of 
grading was calculated and corresponding significance was 
evaluated using a McNemar’s test.

Results

Image and fat saturation quality of synthetic 
versus true T2‑w fs

aSNR and aCNR values for synthetic and true T2-w fs 
images of ten representative datasets were not significantly 
different (p > 0.05). The detailed results are provided in 
Table SM2a. For a comparison of objective and subjective 
image quality measures, Table SM2b provides correspond-
ing image-quality grades of both expert readers for synthetic 
and true T2-w fs images, respectively.

The image quality of the synthetic T2-w fs was graded 
higher than that of the true T2-w fs by both readers (97.0% of 
synthetic T2-w fs images versus 87.6% of true T2-w fs images 
graded at least acceptable) (Table 2 (a)). The difference in 
image quality grading was statistically significant (p = 0.023). 
Quality of fat saturation grading was not significantly different 
between synthetic T2-w fs and true T2-w fs, with 84.7% of 
synthetic T2-w fs images and 81.7% of true T2-w fs images 
graded as good fat saturation (p > 0.05) (Table 2 (b)).

Analysis of image and fat saturation  quality of the 
remaining 66 datasets, when test data originating from 
the two scanners, that were also used in the training phase 
(Ingenia andAchieva d-Stream, Philips Healthcare) was 
excluded is provided in Table SM3.

Visual inspection of cases with metal implants revealed 
a higher image quality in synthetic images. Figure 4 shows 
synthetic and true T2-w fs images with metal implants. 
The synthetic T2-w fs images were based on T1-w and 
T2-w sequences with specific metal artifact reduction 
techniques. Also, the true T2-w fs were sequences with 
metal artifact reduction. In both cases, the synthetic T2-w 
fs provided a better image quality than the true T2-w fs, 
offering a better SNR, higher contrast, and less artifacts 
surrounding the metal implants.

Based on the Turing test performed by eleven independ-
ent neuroradiologists, no significant difference real condition 
versus expert grading was observed between synthetic and 
true T2-w fs images (p > 0.05) (Table 3). 42.9% of synthetic 
T2-w fs images and 38.5% of true T2-w fs images were 
graded incorrectly as the respective counterpart.

Diagnostic agreement between synthetic 
and original protocol

Figure 5 shows representative synthetic and true T2-w fs 
images with bone marrow abnormalities, vertebral fractures, Ta
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and paravertebral tissue abnormalities. The original images 
originate from different scanner vendors and field strengths. 
A purely qualitative visual comparison of the two juxtaposed 
images shows the similar diagnostic performance of syn-
thetic versus true T2-w fs images regarding the detection of 
the presented spine pathologies.

Table 4 shows the intermethod agreement (Cohen’s ĸ 
coefficients) for grading based on the synthetic protocol 
compared with the original protocol for reader 1 and reader 
2, respectively. For both readers, the intermethod agreement 
ranged from substantial to almost perfect agreement for all 
evaluated pathologies (bone marrow abnormalities, spondy-
lodiscitis expansion, inflammatory Modic changes, vertebral 
fractures, cord lesions, and paravertebral tissue abnormali-
ties), except for grading of spinal cord lesions by reader 1 
which showed a moderate agreement. Cohen’s ĸ coefficients 
were significantly different between reader 1 and reader 2 
(p = 0.046) (Table 4). The agreement between synthetic and 
original protocol by the same reader was higher than inter-
rater agreement except for spinal cord lesions (Table 4, sig-
nificance only found for reader 2, p = 0.028).

Resulting Cohen’s ĸ coefficients of the remaining 66 data-
sets, when test data originating from the two scanners, that 
were also used in the training phase (Ingenia and Achieva 
d-Stream, Philips Healthcare) was excluded, are provided 
in Table SM4.

No significant difference between accuracy of synthetic 
and original protocol was shown ranging between 82.2% 
for grading of bone marrow abnormalities and 95.0% for 
grading of spondylodiscitis expansion (p > 0.05) (Table 5).

Scan time reduction

In the validation dataset, acquisition duration of T1-w 
sequence was on average 155 s; of non-fs T2-w sequences, 

207 s; and of T2-w fs sequences, 207 s. Waiving the physical 
acquisition of T2-w fs images consequently shortens the scan 
protocol by around 40% in a conventional spine examination.

Discussion

Our work demonstrates the diagnostic potential of a GAN-
based, sagittal T2-w fs in spine imaging. The synthetic 
T2-w fs images provided an overall better image quality 
than the true T2-w fs images, and pathology assessment on 
the synthetic protocol showed an excellent agreement with 
the original protocol. We could prove the generalizability of 
our approach as our assessment is based on a challenging, 
multicenter test dataset. Consequently, the synthetic T2-w 
fs might replace a physically acquired T2-w fs in the future, 
leading to a relevant reduction of scan time for pathology 
assessment in the spine.

With the introduction of DL techniques into the radio-
logical workflow, synthetic MR contrasts based on GAN 
frameworks are emerging. Recently, feasibility studies dem-
onstrated the clinical benefit of GAN-based MR images, 
e.g., a synthetic double inversion recovery (DIR) sequence 
improved lesion detection in multiple sclerosis [26]. Intrinsic 
MR contrasts such as T1 or T2 unlike gadolinium contrast 
can be synthesized without artifacts from other MR contrasts 
using GANs [21], potentially rendering the physical acqui-
sition of particular MR sequences no longer necessary and 
thus reducing scan time.

Whereas objective image quality evaluation did not reveal 
significant differences between synthetic and true T2-w fs 
images, synthetic images showed a significantly better image 
quality than true T2-w fs images based on the grading by 
two expert readers. Our approach of virtually generating 
T2-w fs images with a GAN allows for an overall scan time 

Table 2   Cross table image (a) 
and fat saturation (b) quality 
grading synthetic versus true 
T2-w fs for both readers. 1 
indicates worst quality. In 
(a) significantly more cases 
favor synthetic images (bold 
italic, n = 67), than true T2-w 
fs images (italic; n = 49; 
p = 0.023). n = 86 cases in 
which image quality gradings 
of synthetic and true T2-w fs 
correspond

(a) Image quality Synthetic T2-w fs
True T2-w fs 1 (poor) 2 3 4 5 (excellent) Total
1 (poor) 0 0 0 1 1 2
2 0 2 6 12 3 23
3 0 2 18 18 9 47
4 0 2 13 16 17 48
5 (excellent) 0 0 10 22 50 82
Total 0 6 47 69 80 202
(b) Fat saturation qual-

ity
Synthetic T2-w fs

True T2-w fs 1 (weak) 2 3 (good) Total
1 (weak) 0 1 3 4
2 4 8 21 33
3 (good) 4 14 147 165
Total 8 23 171 202



5889European Radiology (2023) 33:5882–5893	

1 3

reduction of around 40% in conventional spine examina-
tions. This not only increases MR throughout, but might also 
be one reason for the significantly better image quality of 
synthetic T2-w fs images compared to true T2-w fs images. 
Due to reduced patient comfort during prolonged acquisition 

times and as the fs sequences are often acquired at the end, 
true T2-w fs images might be affected by motion artifacts. 
Additionally, MR fat saturation techniques are, depending 
on the used technique, prone to magnetic field inhomoge-
neities or inherently suffer from a lower SNR [4]. This is of 

Fig. 4   Representative true and 
synthetic T2-w fs images with 
metal implants (intervertebral 
disk cages and pedicle screws)
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particular concern, when regions with implanted hardware 
are scanned. In contrast, the T2-w fs generated by the GAN 
uses conventional T1-w and non-fs T2-w images as input, 
which are technically more stable, are less prone to artifacts, 
and offer higher SNR. Consequently, although it is known 
that artificially generated images using GANs can show par-
ticular artifacts [35], our synthetic T2-w fs images showed 
improved image quality.

Next to convincing image quality, synthetic images have 
to represent reality. Therefore, an excellent diagnostic agree-
ment with the original protocol and high accuracy are of 
particular importance.

For five of the six evaluated pathologies, the expert grad-
ing based on the synthetic protocol (including the synthetic 
T2-w fs) showed a substantial to almost perfect agree-
ment with the original protocol (including the true T2-w fs 
images). The assessment of spinal cord lesions by reader 1 
merely showed a moderate agreement between the synthetic 
and the original protocol. Remarkably also, the interrater 
Cohen’s ĸ coefficient for evaluation of cord lesions based 
on the synthetic protocol is lower than the other interrater 
Cohen’s ĸ coefficients. Two aspects might explain the lower 
Cohen’s ĸ coefficients for grading of cord lesion: (1) The 
GAN was trained exclusively on T2-w Dixon fs images. 
However, particularly for the detection of cord lesions, 
T2-w short tau inversion recovery (STIR) images are recom-
mended, whereas the Dixon fs technique is not considered 
ideal [12]. (2) Hyperintensities on T2-w fs images charac-
terizing cord lesions on sagittal images are often subtle and 
inconclusive. Additional axial imaging can be helpful to dis-
tinguish hyperintensities on T2-w fs images from artifacts 
and to detect small, marginally located lesions [12]. Such 
sequences were not available here.

The excellent accuracy of expert grading based on the 
synthetic as well as on the original protocol, which showed 
no significant difference, underlines the good agreement of 
pathology assessment on synthetic images with the gold 
standard.

For a clinical implementation of GAN-based synthetic 
images, external validity is required. To the best of the 
authors’ knowledge, to date, the only two publications 

presenting GAN-based T2-w fs images in the spine 
employed MR images from one single vendor [15, 29]. In 
our work, the GAN framework has been tested on multi-
center data. The 101 testing datasets consisting of T1-w 
and non-fs T2-w images originated from 38 different 

Table 3   Cross-table visual Turing test condition (true/synthetic) 
versus grading (true/synthetic). Differences were not significant 
(p > 0.05)

Condition

Grading True Synthetic Total

True 169 118 287
Synthetic 106 157 263
Total 275 275 550

Fig. 5   Representative true and synthetic T2-w fs images for different 
pathologies: a bone marrow abnormalities, b vertebral facture, and c 
paravertebral tissue abnormalities
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scanners, with 41 datasets from 1.5 T and 60 datasets from 
3 T systems. In contrast to previous studies in brain and 
spine datasets with a homogeneous FOV, our study dem-
onstrated that GANs can reliably be applied in cases with a 
highly variable FOV. We were able to demonstrate the gen-
eralizability of our approach, by training the network with 
images from two scanners only and validating it on unseen 
images derived from 38 different scanners of various field 
strengths, acquisition protocols, and manufacturers.

The present study has limitations. First, the higher image 
quality of synthetic compared to true T2-w fs images might 
lead to bias, when in the course of the grading procedure 
readers are learning to notice subtle intrinsic image features 
allowing a differentiation in few samples. In order to rule 
out a relevant learning bias, we additionally performed a 
visual Turing test. By randomly presenting synthetic and 
true T2-w fs images to a broad annotator group without 
giving feedback about mistakes [36], we could prove that 
synthetic and true T2-w fs images cannot be significantly 
distinguished from each other.

Second, the two expert readers had slightly different 
clinical experience, which might account for some inter-
rater variability.

Third, in our study, only sagittal images have been 
assessed, although in the clinical routine potentially axial 
and coronal images are part of spine MRI examinations 
[37]. However, all current imaging protocol recommen-
dations do not include axial fs images in their recommen-
dations [2]. Sagittal images are often used as screening 

images to guide the exact ROI for (non-fs) axial imaging. 
As consequently, sagittal imaging plays a major role in 
radiological spine assessment, the present study is meant 
to concentrate on sagittal images.

Fourth, for the proposal of a new technique in the clini-
cal setting, a power analysis is necessary. However, to per-
form a power analysis, we need some initial information 
of the performance and suspected diagnostic value of such 
a new technique that was not available prior to our work 
presented here. Our study is meant to preliminarily ana-
lyze the general potential of GAN-based, synthetic T2-w 
fs images of the spine and shows the non-inferiority of 
synthetic T2-w fs images compared to true T2-w fs images 
in a heterogenous testing datasets. Further research with a 
power analysis simulating the routine radiological work-
flow is necessary to assess the additional diagnostic value 
of synthetic images particularly in the clinical setting.

Conclusion

Our work underlines the potential of a GAN-based T2-w fs 
for scan time reduction in spine imaging. The overall bet-
ter image quality and the excellent intermethod agreement 
render the synthetic T2-w fs a good alternative compared 
to the true T2-w fs. Our approach is highly generalizable 
as the assessment is based on a challenging, multicenter 
test dataset. Therefore, our GAN-based T2-w fs might 
replace a physically acquired T2-w fs in the future.

Table 4   Intermethod agreement 
(Cohen’s kappa coefficient) 
between synthetic protocol 
(T1-w, T2-w, and synthetic 
T2-w fs) and original protocol 
(T1-w, T2-w, and true T2-w fs) 
for reader 1 and 2; interrater 
agreement (Cohen’s kappa 
coefficient) for synthetic 
protocol and original protocol

Intermethod Cohen's kappa Interrater Cohen's kappa 

Pathology Reader 1 Reader 2 Synthetic 
protocol

Original 
protocol

Bone marrow abnormalities 0.76 0.91 0.70 0.81
Spondylodiscitis expansion 0.85 0.91 0.74 0.59
Juxtadiscal Modic changes (inflammatory) 0.75 0.74 0.66 0.61
Vertebral fracture 0.78 0.91 0.80 0.81
Cord lesions 0.56 0.66 0.59 0.70
Paravertebral tissue abnormalities 0.79 0.86 0.74 0.77

Table 5   Accuracy in % of 
grading based on the synthetic 
protocol and the original 
protocol, respectively. No 
significant difference was shown 
(p > 0.05)

Pathology n (ground 
truth)

Accuracy synthetic 
protocol (%)

Accuracy original 
protocol (%)

Bone marrow abnormalities 61 82.2 82.7
Spondylodiscitis expansion 5 95.0 95.0
Juxtadiscal Modic changes (inflammatory) 28 87.1 85.1
Vertebral fracture 21 92.1 92.1
Cord lesions 15 90.0 93.6
Paravertebral tissue abnormalities 25 88.6 92.1
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