User: Guest  Login
Title:

Morph-SSL: Self-Supervision With Longitudinal Morphing for Forecasting AMD Progression From OCT Volumes.

Document type:
Journal Article
Author(s):
Chakravarty, Arunava; Emre, Taha; Leingang, Oliver; Riedl, Sophie; Mai, Julia; Scholl, Hendrik P N; Sivaprasad, Sobha; Rueckert, Daniel; Lotery, Andrew; Schmidt-Erfurth, Ursula; Bogunovic, Hrvoje
Abstract:
The lack of reliable biomarkers makes predicting the conversion from intermediate to neovascular age-related macular degeneration (iAMD, nAMD) a challenging task. We develop a Deep Learning (DL) model to predict the future risk of conversion of an eye from iAMD to nAMD from its current OCT scan. Although eye clinics generate vast amounts of longitudinal OCT scans to monitor AMD progression, only a small subset can be manually labeled for supervised DL. To address this issue, we propose Morph-SSL...     »
Journal title abbreviation:
IEEE Trans Med Imaging
Year:
2024
Journal volume:
43
Journal issue:
9
Pages contribution:
3224-3239
Fulltext / DOI:
doi:10.1109/TMI.2024.3390940
Pubmed ID:
http://view.ncbi.nlm.nih.gov/pubmed/38635383
Print-ISSN:
0278-0062
TUM Institution:
Institut für KI und Informatik in der Medizin (Prof. Rückert)
 BibTeX