Benutzer: Gast  Login
Titel:

Morph-SSL: Self-Supervision With Longitudinal Morphing for Forecasting AMD Progression From OCT Volumes.

Dokumenttyp:
Journal Article
Autor(en):
Chakravarty, Arunava; Emre, Taha; Leingang, Oliver; Riedl, Sophie; Mai, Julia; Scholl, Hendrik P N; Sivaprasad, Sobha; Rueckert, Daniel; Lotery, Andrew; Schmidt-Erfurth, Ursula; Bogunovic, Hrvoje
Abstract:
The lack of reliable biomarkers makes predicting the conversion from intermediate to neovascular age-related macular degeneration (iAMD, nAMD) a challenging task. We develop a Deep Learning (DL) model to predict the future risk of conversion of an eye from iAMD to nAMD from its current OCT scan. Although eye clinics generate vast amounts of longitudinal OCT scans to monitor AMD progression, only a small subset can be manually labeled for supervised DL. To address this issue, we propose Morph-SSL...     »
Zeitschriftentitel:
IEEE Trans Med Imaging
Jahr:
2024
Band / Volume:
43
Heft / Issue:
9
Seitenangaben Beitrag:
3224-3239
Volltext / DOI:
doi:10.1109/TMI.2024.3390940
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/38635383
Print-ISSN:
0278-0062
TUM Einrichtung:
Institut für KI und Informatik in der Medizin (Prof. Rückert)
 BibTeX