User: Guest  Login
Title:

Virtual reality-empowered deep-learning analysis of brain cells.

Document type:
Journal Article
Author(s):
Kaltenecker, Doris; Al-Maskari, Rami; Negwer, Moritz; Hoeher, Luciano; Kofler, Florian; Zhao, Shan; Todorov, Mihail; Rong, Zhouyi; Paetzold, Johannes Christian; Wiestler, Benedikt; Piraud, Marie; Rueckert, Daniel; Geppert, Julia; Morigny, Pauline; Rohm, Maria; Menze, Bjoern H; Herzig, Stephan; Berriel Diaz, Mauricio; Ertürk, Ali
Abstract:
Automated detection of specific cells in three-dimensional datasets such as whole-brain light-sheet image stacks is challenging. Here, we present DELiVR, a virtual reality-trained deep-learning pipeline for detecting c-Fos+ cells as markers for neuronal activity in cleared mouse brains. Virtual reality annotation substantially accelerated training data generation, enabling DELiVR to outperform state-of-the-art cell-segmenting approaches. Our pipeline is available in a user-friendly Docker contai...     »
Journal title abbreviation:
Nat Methods
Year:
2024
Journal volume:
21
Journal issue:
7
Pages contribution:
1306-1315
Fulltext / DOI:
doi:10.1038/s41592-024-02245-2
Pubmed ID:
http://view.ncbi.nlm.nih.gov/pubmed/38649742
Print-ISSN:
1548-7091
TUM Institution:
Institut für KI und Informatik in der Medizin (Prof. Rückert)
 BibTeX