Benutzer: Gast  Login
Titel:

Predicting gas–particle partitioning coefficients of atmospheric molecules with machine learning

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Lumiaro, Emma; Todorović, Milica; Kurten, Theo; Vehkamäki, Hanna; Rinke, Patrick
Abstract:
The formation, properties, and lifetime of secondary organic aerosols in the atmosphere are largely determined by gas–particle partitioning coefficients of the participating organic vapours. Since these coefficients are often difficult to measure and to compute, we developed a machine learning model to predict them given molecular structure as input. Our data-driven approach is based on the dataset by Wang et al. (2017), who computed the partitioning coefficients and saturation vapour pressures...     »
Zeitschriftentitel:
Atmospheric Chemistry and Physics 2021-09
Jahr:
2021
Band / Volume:
21
Heft / Issue:
17
Seitenangaben Beitrag:
13227-13246
Volltext / DOI:
doi:10.5194/acp-21-13227-2021
Verlag / Institution:
Copernicus GmbH
E-ISSN:
1680-7324
Publikationsdatum:
06.09.2021
 BibTeX