Benutzer: Gast  Login
Titel:

Predictive uncertainty in deep learning-based MR image reconstruction using deep ensembles: Evaluation on the fastMRI data set.

Dokumenttyp:
Journal Article; Research Support, Non-U.S. Gov't
Autor(en):
Küstner, Thomas; Hammernik, Kerstin; Rueckert, Daniel; Hepp, Tobias; Gatidis, Sergios
Abstract:
PURPOSE: To estimate pixel-wise predictive uncertainty for deep learning-based MR image reconstruction and to examine the impact of domain shifts and architecture robustness. METHODS: Uncertainty prediction could provide a measure for robustness of deep learning (DL)-based MR image reconstruction from undersampled data. DL methods bear the risk of inducing reconstruction errors like in-painting of unrealistic structures or missing pathologies. These errors may be obscured by visual realism of DL...     »
Zeitschriftentitel:
Magn Reson Med
Jahr:
2024
Band / Volume:
92
Heft / Issue:
1
Seitenangaben Beitrag:
289-302
Volltext / DOI:
doi:10.1002/mrm.30030
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/38282254
Print-ISSN:
0740-3194
TUM Einrichtung:
Institut für KI und Informatik in der Medizin (Prof. Rückert)
 BibTeX