Benutzer: Gast  Login
Titel:

Deep learning for autosegmentation for radiotherapy treatment planning: State-of-the-art and novel perspectives.

Dokumenttyp:
Journal Article; Review
Autor(en):
Erdur, Ayhan Can; Rusche, Daniel; Scholz, Daniel; Kiechle, Johannes; Fischer, Stefan; Llorián-Salvador, Óscar; Buchner, Josef A; Nguyen, Mai Q; Etzel, Lucas; Weidner, Jonas; Metz, Marie-Christin; Wiestler, Benedikt; Schnabel, Julia; Rueckert, Daniel; Combs, Stephanie E; Peeken, Jan C
Abstract:
The rapid development of artificial intelligence (AI) has gained importance, with many tools already entering our daily lives. The medical field of radiation oncology is also subject to this development, with AI entering all steps of the patient journey. In this review article, we summarize contemporary AI techniques and explore the clinical applications of AI-based automated segmentation models in radiotherapy planning, focusing on delineation of organs at risk (OARs), the gross tumor volume (G...     »
Zeitschriftentitel:
Strahlenther Onkol
Jahr:
2024
Volltext / DOI:
doi:10.1007/s00066-024-02262-2
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/39105745
Print-ISSN:
0179-7158
TUM Einrichtung:
Institut für KI und Informatik in der Medizin (Prof. Rückert); Klinik und Poliklinik für RadioOnkologie und Strahlentherapie (Prof. Combs)
 BibTeX