User: Guest  Login
Title:

Exploring Healthy Retinal Aging with Deep Learning.

Document type:
Journal Article
Author(s):
Menten, Martin J; Holland, Robbie; Leingang, Oliver; Bogunović, Hrvoje; Hagag, Ahmed M; Kaye, Rebecca; Riedl, Sophie; Traber, Ghislaine L; Hassan, Osama N; Pawlowski, Nick; Glocker, Ben; Fritsche, Lars G; Scholl, Hendrik P N; Sivaprasad, Sobha; Schmidt-Erfurth, Ursula; Rueckert, Daniel; Lotery, Andrew J
Abstract:
PURPOSE: To study the individual course of retinal changes caused by healthy aging using deep learning. DESIGN: Retrospective analysis of a large data set of retinal OCT images. PARTICIPANTS: A total of 85 709 adults between the age of 40 and 75 years of whom OCT images were acquired in the scope of the UK Biobank population study. METHODS: We created a counterfactual generative adversarial network (GAN), a type of neural network that learns from cross-sectional, retrospective data. It then synt...     »
Journal title abbreviation:
Ophthalmol Sci
Year:
2023
Journal volume:
3
Journal issue:
3
Fulltext / DOI:
doi:10.1016/j.xops.2023.100294
Pubmed ID:
http://view.ncbi.nlm.nih.gov/pubmed/37113474
TUM Institution:
Institut für KI und Informatik in der Medizin
 BibTeX