Benutzer: Gast  Login
Titel:

Accommodating heterogeneous missing data patterns for prostate cancer risk prediction.

Dokumenttyp:
Journal Article; Research Support, N.I.H., Extramural; Research Support, U.S. Gov't, Non-P.H.S.
Autor(en):
Neumair, Matthias; Kattan, Michael W; Freedland, Stephen J; Haese, Alexander; Guerrios-Rivera, Lourdes; De Hoedt, Amanda M; Liss, Michael A; Leach, Robin J; Boorjian, Stephen A; Cooperberg, Matthew R; Poyet, Cedric; Saba, Karim; Herkommer, Kathleen; Meissner, Valentin H; Vickers, Andrew J; Ankerst, Donna P
Abstract:
BACKGROUND: We compared six commonly used logistic regression methods for accommodating missing risk factor data from multiple heterogeneous cohorts, in which some cohorts do not collect some risk factors at all, and developed an online risk prediction tool that accommodates missing risk factors from the end-user. METHODS: Ten North American and European cohorts from the Prostate Biopsy Collaborative Group (PBCG) were used for fitting a risk prediction tool for clinically significant prostate ca...     »
Zeitschriftentitel:
BMC Med Res Methodol
Jahr:
2022
Band / Volume:
22
Heft / Issue:
1
Volltext / DOI:
doi:10.1186/s12874-022-01674-x
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/35864460
Print-ISSN:
1471-2288
TUM Einrichtung:
Klinik und Poliklinik für Urologie
 BibTeX