Benutzer: Gast  Login
Titel:

Exploring Healthy Retinal Aging with Deep Learning.

Dokumenttyp:
Journal Article
Autor(en):
Menten, Martin J; Holland, Robbie; Leingang, Oliver; Bogunović, Hrvoje; Hagag, Ahmed M; Kaye, Rebecca; Riedl, Sophie; Traber, Ghislaine L; Hassan, Osama N; Pawlowski, Nick; Glocker, Ben; Fritsche, Lars G; Scholl, Hendrik P N; Sivaprasad, Sobha; Schmidt-Erfurth, Ursula; Rueckert, Daniel; Lotery, Andrew J
Abstract:
PURPOSE: To study the individual course of retinal changes caused by healthy aging using deep learning. DESIGN: Retrospective analysis of a large data set of retinal OCT images. PARTICIPANTS: A total of 85 709 adults between the age of 40 and 75 years of whom OCT images were acquired in the scope of the UK Biobank population study. METHODS: We created a counterfactual generative adversarial network (GAN), a type of neural network that learns from cross-sectional, retrospective data. It then synt...     »
Zeitschriftentitel:
Ophthalmol Sci
Jahr:
2023
Band / Volume:
3
Heft / Issue:
3
Volltext / DOI:
doi:10.1016/j.xops.2023.100294
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/37113474
TUM Einrichtung:
Institut für KI und Informatik in der Medizin
 BibTeX