User: Guest  Login
Less Searchfields
Simple search
Title:

LST-AI: a Deep Learning Ensemble for Accurate MS Lesion Segmentation.

Document type:
Preprint
Author(s):
Wiltgen, Tun; McGinnis, Julian; Schlaeger, Sarah; Voon, CuiCi; Berthele, Achim; Bischl, Daria; Grundl, Lioba; Will, Nikolaus; Metz, Marie; Schinz, David; Sepp, Dominik; Prucker, Philipp; Schmitz-Koep, Benita; Zimmer, Claus; Menze, Bjoern; Rueckert, Daniel; Hemmer, Bernhard; Kirschke, Jan; Mühlau, Mark; Wiestler, Benedikt
Abstract:
Automated segmentation of brain white matter lesions is crucial for both clinical assessment and scientific research in multiple sclerosis (MS). Over a decade ago, we introduced a lesion segmentation tool, LST, engineered with a lesion growth algorithm (LST-LGA). While recent lesion segmentation approaches have leveraged artificial intelligence (AI), they often remain proprietary and difficult to adopt. Here, we present LST-AI, an advanced deep learning-based extension of LST that consists of an...     »
Journal title abbreviation:
medRxiv
Year:
2023
Fulltext / DOI:
doi:10.1101/2023.11.23.23298966
Pubmed ID:
http://view.ncbi.nlm.nih.gov/pubmed/38045345
TUM Institution:
Institut für KI und Informatik in der Medizin (Prof. Rückert); Professur für Neuroradiologie (Prof. Zimmer)
 BibTeX