Benutzer: Gast  Login
Titel:

Whole-body uptake classification and prostate cancer staging in 68Ga-PSMA-11 PET/CT using dual-tracer learning.

Dokumenttyp:
Journal Article
Autor(en):
Capobianco, Nicolò; Sibille, Ludovic; Chantadisai, Maythinee; Gafita, Andrei; Langbein, Thomas; Platsch, Guenther; Solari, Esteban Lucas; Shah, Vijay; Spottiswoode, Bruce; Eiber, Matthias; Weber, Wolfgang A; Navab, Nassir; Nekolla, Stephan G
Abstract:
PURPOSE: In PSMA-ligand PET/CT imaging, standardized evaluation frameworks and image-derived parameters are increasingly used to support prostate cancer staging. Clinical applicability remains challenging wherever manual measurements of numerous suspected lesions are required. Deep learning methods are promising for automated image analysis, typically requiring extensive expert-annotated image datasets to reach sufficient accuracy. We developed a deep learning method to support image-based stagi...     »
Zeitschriftentitel:
Eur J Nucl Med Mol Imaging
Jahr:
2022
Band / Volume:
49
Heft / Issue:
2
Seitenangaben Beitrag:
517-526
Volltext / DOI:
doi:10.1007/s00259-021-05473-2
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/34232350
Print-ISSN:
1619-7070
TUM Einrichtung:
Klinik und Poliklinik für Nuklearmedizin
 BibTeX