Benutzer: Gast  Login
Titel:

Automated analysis and detection of abnormalities in transaxial anatomical cardiovascular magnetic resonance images: a proof of concept study with potential to optimize image acquisition.

Dokumenttyp:
Journal Article
Autor(en):
Howard, James P; Zaman, Sameer; Ragavan, Aaraby; Hall, Kerry; Leonard, Greg; Sutanto, Sharon; Ramadoss, Vijay; Razvi, Yousuf; Linton, Nick F; Bharath, Anil; Shun-Shin, Matthew; Rueckert, Daniel; Francis, Darrel; Cole, Graham
Abstract:
The large number of available MRI sequences means patients cannot realistically undergo them all, so the range of sequences to be acquired during a scan are protocolled based on clinical details. Adapting this to unexpected findings identified early on in the scan requires experience and vigilance. We investigated whether deep learning of the images acquired in the first few minutes of a scan could provide an automated early alert of abnormal features. Anatomy sequences from 375 CMR scans were u...     »
Zeitschriftentitel:
Int J Cardiovasc Imaging
Jahr:
2021
Band / Volume:
37
Heft / Issue:
3
Seitenangaben Beitrag:
1033-1042
Volltext / DOI:
doi:10.1007/s10554-020-02050-w
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/33123938
Print-ISSN:
1569-5794
TUM Einrichtung:
Institut für KI und Informatik in der Medizin
 BibTeX