User: Guest  Login
Title:

MDAS: A New Multimodal Benchmark Dataset for Remote Sensing

Document type:
Forschungsdaten
Publication date:
30.09.2022
Responsible:
Zhu, Xiao Xiang
Authors:
Hu, Jingliang; Liu, Rong; Hong, Danfeng; Camero, Andrés; Yao, Jing; Schneider, Mathias; Kurz, Franz; Segl, Karl; Zhu, Xiao Xiang
Author affiliation:
Technichal University of Munich (TUM): Hu, Jingliang; Liu, Rong; Zhu, Xiao Xiang
German Aerospace Center (DLR): Hong, Danfeng; Camero, Andrés; Schneider, Mathias; Kurz, Franz
Chinese Academy of Sciences: Yao,Jing
German Research Center for Geosciences (GFZ): Segl, Karl
Publisher:
TUM
Identifier:
doi:10.14459/2022mp1657312
End date of data production:
24.08.2021
Subject area:
BAU Bauingenieurwesen, Vermessungswesen; DAT Datenverarbeitung, Informatik; GEO Geowissenschaften
Other subject areas:
Remote Sensing
Resource type:
Abbildungen von Objekten / image of objects
Data type:
Bilder / images
Description:
In Earth observation, multimodal data fusion is an intuitive strategy to break the limitation of individual data. Complementary physical contents of data sources allow comprehensive and precise information retrieve. Future applications will have many options on data sources. Such privilege can be beneficial only if algorithms are ready to work with various data sources. However, current data fusion studies mostly focus on the fusion of two data sources. Thus, we provide the community a benc...     »
Method of data assessment:
Processing of Sentinel-1 imagery using ESA SNAP toolbox. Sentinel-2 L2A product fetched from Sentinel Hub. HySpex (hyperspectral) data acquired by the Remote Sensing Technology Institute of DLR in 23 flight strips (on a Dornier DO228-212 plane). Digital Surface Model (DSM) acquired with 3K camera in 23 flight strips. Geographic Information System (GIS) data downloaded from Open Street Map. Manually labeled data.
Key words:
multimodal data fusion; Sentinel-1; Sentinel-2; DLR 3K DSM; HySpex; EnMAP; Synthetic aperture radar; Multi/hyper-spectral image; benchmark data set; super resolution; spectral unmixing; land cover classification
Technical remarks:
View and download (35GB total, 1 File)
The data server also offers downloads with FTP
The data server also offers downloads with rsync (password m1657312):
rsync rsync://m1657312@dataserv.ub.tum.de/m1657312/
Language:
en
Rights:
by-sa, http://creativecommons.org/licenses/by-sa/4.0
 BibTeX