Benutzer: Gast  Login
Titel:

Machine Learning Outperforms Classical Forecasting on Horticultural Sales Predictions

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Haselbeck, Florian; Killinger, Jennifer; Menrad, Klaus; Hannus, Thomas; Grimm, Dominik G.
Nicht-TUM Koautoren:
ja
Kooperation:
national
Abstract:
Forecasting future demand is of high importance for many companies as it affects operational decisions. This is especially relevant for products with a short shelf life due to the potential disposal of unsold items. Horticultural products are highly influenced by this, however with limited attention in forecasting research so far. Beyond that, many forecasting competitions show a competitive performance of classical forecasting methods. For the first time, we empirically compared the performance...     »
Intellectual Contribution:
Discipline-based Research
Zeitschriftentitel:
Machine Learning with Applications
Jahr:
2022
Band / Volume:
7
Jahr / Monat:
2022-01
Seitenangaben Beitrag:
100239
Nachgewiesen in:
Scopus
Reviewed:
ja
Sprache:
en
Volltext / DOI:
doi:10.1016/j.mlwa.2021.100239
Verlag / Institution:
Elsevier BV
E-ISSN:
2666-8270
Eingereicht (bei Zeitschrift):
22.10.2021
Angenommen (von Zeitschrift):
15.12.2021
Publikationsdatum:
01.03.2022
Copyright Informationen:
CC BY
CC-Lizenz:
by, http://creativecommons.org/licenses/by/4.0
Urteilsbesprechung:
0
Peer reviewed:
Ja
commissioned:
commissioned by government agency
Technology:
Ja
Interdisziplinarität:
Nein
Leitbild:
;
Ethics und Sustainability:
Nein
 BibTeX
Versionen