Benutzer: Gast  Login
Titel:

Data-Driven Modelling and Predictive Control for the Geometry and Mechanical Properties of Freeform Bending Processes

Dokumenttyp:
Konferenzbeitrag
Art des Konferenzbeitrags:
Textbeitrag / Aufsatz
Autor(en):
Ismail, A.; Böhm, V.; Stebner, S.; Kong, L.; Volk, W.; Münstermann,S.; Lohmann, B.
Seitenangaben Beitrag:
pp. 115-120
Abstract:
Freeform bending is a technique used to bend different tube profiles into complex structures. In the realm of Aritificial Intelligence and Machine Learning, data-driven approaches in modeling and in optimization based control contribute to the job being executed, by increasing product quality and reducing energy consumption and material waste. In previous works, soft-sensors as well as different factors affecting the geometry and the residual stresses have been investigated and been utilized in...     »
Stichworte:
Data-Driven Modelling; Predictive Control; Free-form bending; Residual Stresses; CurvatureProcess; Optimization; Soft sensors; Closed-loop control; Feed-forward control; Gaussian Process; Regression; Neural Network; Artificial Intelligence; Machine Learning; Cyber Physical Production Systems
Dewey-Dezimalklassifikation:
620 Ingenieurwissenschaften
Herausgeber:
Jadachowski, Lukasz - TU Wien, AT
Kongress- / Buchtitel:
MATHMOD [11th Vienna International Conference on Mathematical Modelling 2025]
Kongress / Zusatzinformationen:
IFAC-PapersOnLine
Band / Teilband / Volume:
Vol. 59, Issue 1
Ausrichter der Konferenz:
TU Wien, AT
Datum der Konferenz:
19.-21.2.2025
Verlag / Institution:
Science Direct
Publikationsdatum:
27.03.2025
Jahr:
2025
Quartal:
1. Quartal
Jahr / Monat:
2025-03
Monat:
Mar
Reviewed:
ja
Sprache:
en
Volltext / DOI:
doi:10.1016/j.ifacol.2025.03.021
WWW:
https://doi.org/10.1016/j.ifacol.2025.03.021
Semester:
WS 24-25
TUM Einrichtung:
Lehrstuhl für Regelungstechnik
Eingabe:
31.03.2025
 BibTeX