User: Guest  Login
Title:

Automatic segmentation of multiple cardiovascular structures from cardiac computed tomography angiography images using deep learning.

Document type:
Journal Article; Research Support, Non-U.S. Gov't
Author(s):
Baskaran, Lohendran; Al'Aref, Subhi J; Maliakal, Gabriel; Lee, Benjamin C; Xu, Zhuoran; Choi, Jeong W; Lee, Sang-Eun; Sung, Ji Min; Lin, Fay Y; Dunham, Simon; Mosadegh, Bobak; Kim, Yong-Jin; Gottlieb, Ilan; Lee, Byoung Kwon; Chun, Eun Ju; Cademartiri, Filippo; Maffei, Erica; Marques, Hugo; Shin, Sanghoon; Choi, Jung Hyun; Chinnaiyan, Kavitha; Hadamitzky, Martin; Conte, Edoardo; Andreini, Daniele; Pontone, Gianluca; Budoff, Matthew J; Leipsic, Jonathon A; Raff, Gilbert L; Virmani, Renu; Samady, H...     »
Abstract:
OBJECTIVES: To develop, demonstrate and evaluate an automated deep learning method for multiple cardiovascular structure segmentation. BACKGROUND: Segmentation of cardiovascular images is resource-intensive. We design an automated deep learning method for the segmentation of multiple structures from Coronary Computed Tomography Angiography (CCTA) images. METHODS: Images from a multicenter registry of patients that underwent clinically-indicated CCTA were used. The proximal ascending and descendi...     »
Journal title abbreviation:
PLoS ONE
Year:
2020
Journal volume:
15
Journal issue:
5
Fulltext / DOI:
doi:10.1371/journal.pone.0232573
Pubmed ID:
http://view.ncbi.nlm.nih.gov/pubmed/32374784
Print-ISSN:
1932-6203
TUM Institution:
Institut für Radiologie und Nuklearmedizin
 BibTeX