User: Guest  Login
Title:

Generative adversarial networks with physical evaluators for spray simulation of pintle injector

Document type:
Zeitschriftenaufsatz
Author(s):
Ma, Hao; Zhang, Botao; Zhang, Chi; Haidn, Oskar J.
Abstract:
Due to the adjustable geometry, pintle injectors are especially suitable for liquid rocket engines, which require a widely throttleable range. However, applying the conventional computational fluid dynamics approaches to simulate the complex spray phenomenon in the whole range still remains a great challenge. In this paper, a novel deep learning approach used to simulate instantaneous spray fields under continuous operating conditions is explored. Based on one specific type of neural network and...     »
Dewey Decimal Classification:
620 Ingenieurwissenschaften
Journal title:
AIP Advances
Year:
2021
Journal volume:
11
Journal issue:
7
Pages contribution:
075007
Language:
en
Fulltext / DOI:
doi:10.1063/5.0056549
Publisher:
AIP Publishing
E-ISSN:
2158-3226
Accepted:
01.06.2021
Date of publication:
02.07.2021
TUM Institution:
Lehrstuhl für Aerodynamik und Strömungsmechanik
 BibTeX