Benutzer: Gast  Login
Titel:

Generative adversarial networks with physical evaluators for spray simulation of pintle injector

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Ma, Hao; Zhang, Botao; Zhang, Chi; Haidn, Oskar J.
Abstract:
Due to the adjustable geometry, pintle injectors are especially suitable for liquid rocket engines, which require a widely throttleable range. However, applying the conventional computational fluid dynamics approaches to simulate the complex spray phenomenon in the whole range still remains a great challenge. In this paper, a novel deep learning approach used to simulate instantaneous spray fields under continuous operating conditions is explored. Based on one specific type of neural network and...     »
Dewey Dezimalklassifikation:
620 Ingenieurwissenschaften
Zeitschriftentitel:
AIP Advances
Jahr:
2021
Band / Volume:
11
Heft / Issue:
7
Seitenangaben Beitrag:
075007
Sprache:
en
Volltext / DOI:
doi:10.1063/5.0056549
Verlag / Institution:
AIP Publishing
E-ISSN:
2158-3226
Angenommen (von Zeitschrift):
01.06.2021
Publikationsdatum:
02.07.2021
TUM Einrichtung:
Lehrstuhl für Aerodynamik und Strömungsmechanik
 BibTeX