Benutzer: Gast  Login
Titel:

Data-driven prediction of unsteady pressure distributions based on deep learning

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Rozov, Vladyslav; Breitsamter, Christian
Abstract:
In the present work, an efficient Reduced-Order Model is developed for the prediction of motion-induced unsteady pressure distributions. The model is trained on the basis of synthetic data generated by full-order Computational Fluid Dynamics (CFD) simulations. The nonlinear identification task is to predict a snapshot representing the pressure distribution for the current time step based on respective snapshots of previous time steps and applied excitation. Once a Reduced-Order Model is conditio...     »
Stichworte:
Computational Fluid Dynamics; Deep learning; LANN model; Reduced-Order Models; Transonic flight; Unsteady aerodynamics
Dewey Dezimalklassifikation:
620 Ingenieurwissenschaften
Zeitschriftentitel:
Journal of Fluids and Structures
Jahr:
2021
Band / Volume:
104
Seitenangaben Beitrag:
103316
Nachgewiesen in:
Scopus
Sprache:
en
Volltext / DOI:
doi:10.1016/j.jfluidstructs.2021.103316
Verlag / Institution:
Elsevier BV
E-ISSN:
0889-9746
Hinweise:
Funding text The authors gratefully acknowledge the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) for funding this work in the framework of the research unit FOR 2895 (Unsteady flow and interaction phenomena at high speed stall conditions), subproject TP7, grant number BR1511/14-1 . The Gauss Centre for Supercomputing e.V. ( www.gauss-centre.eu ) is gratefully acknowledged for funding this project by providing computing time on the Linux-Cluster at Leibniz Supercomputing Cen...     »
Eingereicht (bei Zeitschrift):
19.09.2020
Angenommen (von Zeitschrift):
12.05.2021
Publikationsdatum:
01.07.2021
TUM Einrichtung:
Lehrstuhl für Aerodynamik und Strömungsmechanik
 BibTeX