In the context of cross-disciplinary and cross-company cooperation, several challenges in developing manufacturing systems are revealed through industrial use cases. To tackle these challenges, two propositions are used in parallel. First, coupling technical models representing different content areas facilitates the detection of boundary crossing consequences, either by using post hoc tracing or a priori connection. Second, it is necessary to enrich these coupled technical models with team and organisational models as interventions focusing on the collaboration between individuals and teams within broader organizational conditions. Accordingly, a combined interdisciplinary approach is proposed. The feasibility and benefits of the approach is proven with an industrial use case. The use case shows that inconsistencies among teams can be identified by coupling engineering models and that an integrated organizational model can release the modelling process from communication barriers.
«
In the context of cross-disciplinary and cross-company cooperation, several challenges in developing manufacturing systems are revealed through industrial use cases. To tackle these challenges, two propositions are used in parallel. First, coupling technical models representing different content areas facilitates the detection of boundary crossing consequences, either by using post hoc tracing or a priori connection. Second, it is necessary to enrich these coupled technical models with team and...
»