Benutzer: Gast  Login
Originaltitel:
Detail Synthesis for Fluids and Videos with Deep-Learning Algorithms
Übersetzter Titel:
Detailsynthese für Fluidsimulationen und Videos mit Deep-Learning-Algorithmen
Autor:
Chu, Mengyu
Jahr:
2020
Dokumenttyp:
Dissertation
Fakultät/School:
Fakultät für Informatik
Betreuer:
Thuerey, Nils (Prof. Dr.)
Gutachter:
Thuerey, Nils (Prof. Dr.); Kim, Theodore (Prof., Ph.D.)
Sprache:
en
Fachgebiet:
DAT Datenverarbeitung, Informatik
Stichworte:
deep learning, fluid simulation, conditional video generation, temporal self-supervision
Übersetzte Stichworte:
Deep Learning, Flüssigkeitssimulation, conditional Videogenerierung, zeitliche Eigenüberwachung
TU-Systematik:
DAT 758d
Kurzfassung:
Detail synthesis is an appealing but challenging topic in computer vision and graphics. In this dissertation, we first focus on detailed flow effects. Then, we investigate video generation tasks with conditional inputs, e.g. video super-resolution and translation. The goal is to employ deep-learning algorithms to understand complex temporal evolution and to synthesize realistic results. Our results demonstrate that data-driven and deep-learning-based synthesis are powerful tools. We anticipate s...     »
Übersetzte Kurzfassung:
Die Synthese von Details ist ein attraktives aber auch herausforderndes Forschungsthema in den Bereichen Computervision und Computergraphics. In dieser Dissertation konzentrieren wir uns zunächst auf detaillierte Strömungseffekte. Dann untersuchen wir Videoerzeugungsaufgaben, z. Video Superauflösung und Übersetzung. Das Ziel ist es, Deep-Learning-Algorithmen einzusetzen, um die komplexe zeitliche Entwicklung zu verstehen und realistische Ergebnisse zu synthetisieren. Unsere Ergebnisse zeigen die...     »
WWW:
https://mediatum.ub.tum.de/?id=1540499
Eingereicht am:
13.05.2020
Mündliche Prüfung:
26.10.2020
Dateigröße:
45541238 bytes
Seiten:
135
Urn (Zitierfähige URL):
https://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20201026-1540499-1-7
Letzte Änderung:
18.11.2020
 BibTeX