User: Guest  Login
Title:

Anatomy-centred deep learning improves generalisability and progression prediction in radiographic sacroiliitis detection.

Document type:
Journal Article; Multicenter Study
Author(s):
Dorfner, Felix J; Vahldiek, Janis L; Donle, Leonhard; Zhukov, Andrei; Xu, Lina; Häntze, Hartmut; Makowski, Marcus R; Aerts, Hugo J W L; Proft, Fabian; Rios Rodriguez, Valeria; Rademacher, Judith; Protopopov, Mikhail; Haibel, Hildrun; Hermann, Kay-Geert; Diekhoff, Torsten; Adams, Lisa C; Torgutalp, Murat; Poddubnyy, Denis; Bressem, Keno K
Abstract:
PURPOSE: To examine whether incorporating anatomy-centred deep learning can improve generalisability and enable prediction of disease progression. METHODS: This retrospective multicentre study included conventional pelvic radiographs of four different patient cohorts focusing on axial spondyloarthritis collected at university and community hospitals. The first cohort, which consisted of 1483 radiographs, was split into training (n=1261) and validation (n=222) sets. The other cohorts comprising 4...     »
Journal title abbreviation:
RMD Open
Year:
2024
Journal volume:
10
Journal issue:
4
Fulltext / DOI:
doi:10.1136/rmdopen-2024-004628
Pubmed ID:
http://view.ncbi.nlm.nih.gov/pubmed/39719299
TUM Institution:
Institut für Diagnostische und Interventionelle Radiologie (Prof. Makowski)
 BibTeX