Benutzer: Gast  Login
Mehr Felder
Einfache Suche
Titel:

Anatomy-centred deep learning improves generalisability and progression prediction in radiographic sacroiliitis detection.

Dokumenttyp:
Journal Article; Multicenter Study
Autor(en):
Dorfner, Felix J; Vahldiek, Janis L; Donle, Leonhard; Zhukov, Andrei; Xu, Lina; Häntze, Hartmut; Makowski, Marcus R; Aerts, Hugo J W L; Proft, Fabian; Rios Rodriguez, Valeria; Rademacher, Judith; Protopopov, Mikhail; Haibel, Hildrun; Hermann, Kay-Geert; Diekhoff, Torsten; Adams, Lisa C; Torgutalp, Murat; Poddubnyy, Denis; Bressem, Keno K
Abstract:
PURPOSE: To examine whether incorporating anatomy-centred deep learning can improve generalisability and enable prediction of disease progression. METHODS: This retrospective multicentre study included conventional pelvic radiographs of four different patient cohorts focusing on axial spondyloarthritis collected at university and community hospitals. The first cohort, which consisted of 1483 radiographs, was split into training (n=1261) and validation (n=222) sets. The other cohorts comprising 4...     »
Zeitschriftentitel:
RMD Open
Jahr:
2024
Band / Volume:
10
Heft / Issue:
4
Volltext / DOI:
doi:10.1136/rmdopen-2024-004628
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/39719299
TUM Einrichtung:
Institut für Diagnostische und Interventionelle Radiologie (Prof. Makowski)
 BibTeX