Benutzer: Gast  Login
Titel:

Deep neural network for automatic characterization of lesions on 68Ga-PSMA-11 PET/CT.

Dokumenttyp:
Journal Article
Autor(en):
Zhao, Yu; Gafita, Andrei; Vollnberg, Bernd; Tetteh, Giles; Haupt, Fabian; Afshar-Oromieh, Ali; Menze, Bjoern; Eiber, Matthias; Rominger, Axel; Shi, Kuangyu
Abstract:
PURPOSE: This study proposes an automated prostate cancer (PC) lesion characterization method based on the deep neural network to determine tumor burden on 68Ga-PSMA-11 PET/CT to potentially facilitate the optimization of PSMA-directed radionuclide therapy. METHODS: We collected 68Ga-PSMA-11 PET/CT images from 193 patients with metastatic PC at three medical centers. For proof-of-concept, we focused on the detection of pelvis bone and lymph node lesions. A deep neural network (triple-combining 2...     »
Zeitschriftentitel:
Eur J Nucl Med Mol Imaging
Jahr:
2020
Band / Volume:
47
Heft / Issue:
3
Seitenangaben Beitrag:
603-613
Volltext / DOI:
doi:10.1007/s00259-019-04606-y
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/31813050
Print-ISSN:
1619-7070
TUM Einrichtung:
Klinik und Poliklinik für Nuklearmedizin
 BibTeX