Benutzer: Gast  Login
Titel:

Precise proximal femur fracture classification for interactive training and surgical planning.

Dokumenttyp:
Article; Journal Article
Autor(en):
Jiménez-Sánchez, Amelia; Kazi, Anees; Albarqouni, Shadi; Kirchhoff, Chlodwig; Biberthaler, Peter; Navab, Nassir; Kirchhoff, Sonja; Mateus, Diana
Abstract:
PURPOSE: Demonstrate the feasibility of a fully automatic computer-aided diagnosis (CAD) tool, based on deep learning, that localizes and classifies proximal femur fractures on X-ray images according to the AO classification. The proposed framework aims to improve patient treatment planning and provide support for the training of trauma surgeon residents. MATERIAL AND METHODS: A database of 1347 clinical radiographic studies was collected. Radiologists and trauma surgeons annotated all fractures...     »
Zeitschriftentitel:
Int J Comput Assist Radiol Surg
Jahr:
2020
Band / Volume:
15
Heft / Issue:
5
Seitenangaben Beitrag:
847-857
Volltext / DOI:
doi:10.1007/s11548-020-02150-x
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/32335786
Print-ISSN:
1861-6410
TUM Einrichtung:
Klinik und Poliklinik für Unfallchirurgie
 BibTeX