Diese Arbeit liefert einen Beitrag zur Extremwerttheorie, indem wir Grenzwertaussagen für die bedingte Verteilung von bivariaten Zufallsvektoren mit polarer Darstellung herleiten gegeben dass eine Vektorkomponente extrem wird. Unsere Ergebnisse erweitern die Klasse der elliptischen und verallgemeinerten Verteilungen, für die sich Aussagen über ihr asymptotisches Verhalten gewinnen lassen. Hierfür schlagen wir einen neuen geometrischen Ansatz vor, welcher sowohl ein tiefergehendes Verständnis von bestehenden Resultaten erlaubt als auch weitere interessante Verallgemeinerungen in unserer Arbeit ermöglicht. Darüber hinaus leiten wir Grenzwertaussagen für abhängige Polarkomponenten her, welche im Hinblick auf Anwendungen von großer Bedeutung sind.
«
Diese Arbeit liefert einen Beitrag zur Extremwerttheorie, indem wir Grenzwertaussagen für die bedingte Verteilung von bivariaten Zufallsvektoren mit polarer Darstellung herleiten gegeben dass eine Vektorkomponente extrem wird. Unsere Ergebnisse erweitern die Klasse der elliptischen und verallgemeinerten Verteilungen, für die sich Aussagen über ihr asymptotisches Verhalten gewinnen lassen. Hierfür schlagen wir einen neuen geometrischen Ansatz vor, welcher sowohl ein tiefergehendes Verständnis von...
»