Benutzer: Gast  Login
Titel:

Multi-Class Object Detection Using 2D Poses

Dokumenttyp:
Konferenzbeitrag
Autor(en):
Mayershofer, C.; Hammami, A.; Fottner, J.
Nicht-TUM Koautoren:
nein
Kooperation:
-
Abstract:
Object detection (OD) methods are finding application in various fields. The OD problem can be divided into two sub-problems, namely object classification and localization. While the former aims to answer the question what class a given object belongs to, the latter focuses on locating an object within a given image. For localization, both implicit representations, which border the object and its features (e.g. bounding boxes, polygons and masks), and explic...     »
Intellectual Contribution:
Discipline-based Research
Kongress- / Buchtitel:
19th IEEE International Conference on Machine Learning and Applications (ICMLA20)
Kongress / Zusatzinformationen:
Miami, United States (online)
Jahr:
2020
Monat:
Dec
Volltext / DOI:
doi:10.1109/ICMLA51294.2020.00107
Key publication:
Ja
Peer reviewed:
Ja
commissioned:
not commissioned
Interdisziplinarität:
Nein
Leitbild:
;
Ethics und Sustainability:
Nein
 BibTeX