Benutzer: Gast  Login
Titel:

Correction: Combination of Discrete Element Method and Artificial Neural Network for Predicting Porosity of Gravel-Bed River. Water, Vol. 11, 2019, Article No. 1461].

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Bui, Van Hieu; Bui, Minh Duc; Rutschmann, Peter:
Abstract:
In gravel-bed rivers, monitoring porosity is vital for fluvial geomorphology assessment as well as in river ecosystem management. Conventional porosity prediction methods are restricting in terms of the number of considered factors and are also time-consuming. We present a framework, the combination of the Discrete Element Method (DEM) and Artificial Neural Network (ANN), to study the relationship between porosity and the grain size distribution. DEM was applied to simulate the 3D structure...     »
Stichworte:
mathematical modelling; DEM; ANN; bed porosity; grain sorting; gravel-bed river
Dewey Dezimalklassifikation:
620 Ingenieurwissenschaften
Zeitschriftentitel:
Water
Jahr:
2020
Band / Volume:
12
Heft / Issue:
2
Seitenangaben Beitrag:
Article No. 408, 1 page
Nachgewiesen in:
Scopus; Web of Science
Reviewed:
ja
Sprache:
en
Volltext / DOI:
doi:10.3390/w12020408
Verlag / Institution:
Molecular Diversity Preservation International (MDPI)
Verlagsort:
Basel, Switzerland
E-ISSN:
2073-4441
Impact Factor:
2.544 (2019)
Copyright Informationen:
Open Access. Copyright: © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Format:
Text
CC-Lizenz:
by, http://creativecommons.org/licenses/by/4.0
 BibTeX