Benutzer: Gast  Login
Titel:

Generating high quality libraries for DIA MS with empirically corrected peptide predictions

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Searle, Brian C.; Swearingen, Kristian E.; Barnes, Christopher A.; Schmidt, Tobias; Gessulat, Siegfried; Küster, Bernhard; Wilhelm, Mathias
Abstract:
Data-independent acquisition approaches typically rely on experiment-specific spectrum libraries, requiring offline fractionation and tens to hundreds of injections. We demonstrate a library generation workflow that leverages fragmentation and retention time prediction to build libraries containing every peptide in a proteome, and then refines those libraries with empirical data. Our method specifically enables rapid, experiment-specific library generation for non-model organisms, which we demon...     »
Stichworte:
BayBioMS; Non-model organisms; Proteome; Proteome informatics; Proteomics
Zeitschriftentitel:
Nature Communications
Jahr:
2020
Band / Volume:
11
Heft / Issue:
1
Volltext / DOI:
doi:10.1038/s41467-020-15346-1
Verlag / Institution:
Springer Science and Business Media LLC
E-ISSN:
2041-1723
Publikationsdatum:
25.03.2020
 BibTeX