The paper discusses the modeling necessary for recovering man made objects - in this case buildings - in complex scenes from digital imagery. The approach addresses all levels of image analysis for deriving semantically meaningful descriptions of the scene from the image, via the geometrical/physical model of the objects and their counterparts in the image. The central link between raster image and scene are network-like organized aspects of parts of the objects. This is achieved by generically modeling the objects using parametrized volume primitives together with the application-specific constraints, which seems to be adequate for many types of buildings. The paper sketches the various interrelationships between the different models and their use for feature extraction, hypothesis generation, and verification.
«
The paper discusses the modeling necessary for recovering man made objects - in this case buildings - in complex scenes from digital imagery. The approach addresses all levels of image analysis for deriving semantically meaningful descriptions of the scene from the image, via the geometrical/physical model of the objects and their counterparts in the image. The central link between raster image and scene are network-like organized aspects of parts of the objects. This is achieved by generically...
»