In this study the feasibility and performance of time variable decorrelation (VADER) filters derived from covariance information on decadal Gravity Recovery and Climate Experiment (GRACE) time series are investigated. The VADER filter is based on publicly available data that are provided by several GRACE processing centers, and does not need its own Level-2 processing chain. Numerical closed loop simulations, incorporating stochastic and deterministic error budgets, serve as basis for the design of the filter setup, and the resulting filters are subsequently applied for real data processing. The closed loop experiments demonstrate the impact of temporally varying error and signal covariance matrices that are used for the design of decorrelation filters. The results indicate an average reduction of cumulative geoid height errors of 15% using time-variable instead of static decorrelation. Based on the simulation experience, a real data filtering procedure is designed and set up. It is applied to the ITSG-Grace2014 time variable gravity field time series with its associated full monthly covariance matrices. To assess the validity of the approach, linear mass trend estimates for the Antarctic Peninsula are computed using VADER filters and compared to previous estimates from both, GRACE and other mass balance estimation techniques. The mass change results obtained show very good agreement with other estimates and are robust against variations of the filter strength. The DDK decorrelation filter serves as main benchmark for the assessment of the VADER filter. For comparable filter strengths the VADER filters achieve a better de-striping and deliver smaller formal errors than static filters like the DDK.
«
In this study the feasibility and performance of time variable decorrelation (VADER) filters derived from covariance information on decadal Gravity Recovery and Climate Experiment (GRACE) time series are investigated. The VADER filter is based on publicly available data that are provided by several GRACE processing centers, and does not need its own Level-2 processing chain. Numerical closed loop simulations, incorporating stochastic and deterministic error budgets, serve as basis for the design...
»