Benutzer: Gast  Login
Dokumenttyp:
Bachelorarbeit
Autor(en):
Endo Barbosa, Julia
Titel:
Modeling Residential Energy Load Profiles with Semantic 3DCity Models and Machine Learning
Abstract:
The residential sector accounts for a significant share of the final energy consumption in Germany. Therefore, the demand for accurate electricity consumption forecasting is a strong research topic. This thesis explores the integration of semantic 3D city models with machine learning to simulate residential electricity consumption at the household level. By leveraging CityGML, an international standard for 3D city modeling, and employing deep learning architectures, particularly Long Short-Term...     »
Stichworte:
GISPro_CityGML; GISTop_CityModeling; GISTop_3D4D_Managmnt_Viz; GISTop_Software; GISPro_3DCityDB; GISPro_Energy
Betreuer:
Kanna, Khaoula
Gutachter:
Kolbe, Thomas H.
Jahr:
2025
Quartal:
1. Quartal
Jahr / Monat:
2025-02
Seiten/Umfang:
71
Sprache:
en
Hochschule / Universität:
Technische Universität München
Fakultät:
TUM School of Engineering and Design
Format:
Text
Präsentationsdatum:
29.01.2025
 BibTeX