MnSi is a cubic compound with small magnetic anisotropy, which stabilizes a helimagnetic spin spiral that reduces to a ferromagnetic and antiferromagnetic state in the long- and short-wavelength limits, respectively. We report a comprehensive inelastic neutron-scattering study of the collective magnetic excitations in the helimagnetic state of MnSi. In our study we observe a rich variety of seemingly anomalous excitation spectra, as measured in well over 20 different locations in reciprocal space. Using a model based on only three parameters, namely, the measured pitch of the helix, the measured ferromagnetic spin wave stiffness and the amplitude of the signal, as the only free variable, we can simultaneously account for all of the measured spectra in excellent quantitative agreement with experiment. Our study identifies the formation of intense, strongly coupled bands of helimagnons as a universal characteristic of systems with weak chiral interactions.
«
MnSi is a cubic compound with small magnetic anisotropy, which stabilizes a helimagnetic spin spiral that reduces to a ferromagnetic and antiferromagnetic state in the long- and short-wavelength limits, respectively. We report a comprehensive inelastic neutron-scattering study of the collective magnetic excitations in the helimagnetic state of MnSi. In our study we observe a rich variety of seemingly anomalous excitation spectra, as measured in well over 20 different locations in reciprocal spac...
»