Benutzer: Gast  Login
Titel:

Reptilings and space-filling curves for acute triangles

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Gottschau, Marinus; Haverkort, Herman; Matzke, Kilian
Nicht-TUM Koautoren:
ja
Kooperation:
international
Abstract:
An r-gentiling is a dissection of a shape into r≥2 parts that are all similar to the original shape. An r-reptiling is an r-gentiling of which all parts are mutually congruent. By applying gentilings recursively, together with a rule that defines an order on the parts, one may obtain an order in which to traverse all points within the original shape. We say such a traversal is a face-continuous space-filling curve if, at any level of recursion, the interior of the union of any set of consecutive...     »
Intellectual Contribution:
Discipline-based Research
Zeitschriftentitel:
Discrete & Computational Geometry
Jahr:
2017
Monat:
12
Seitenangaben Beitrag:
1--30
Volltext / DOI:
doi:10.1007/s00454-017-9953-0
Print-ISSN:
0179-5376
Urteilsbesprechung:
0
Key publication:
Ja
Peer reviewed:
Ja
International:
Ja
Book review:
Nein
commissioned:
not commissioned
Professional Journal:
Nein
Interdisziplinarität:
Nein
Leitbild:
;
Ethics und Sustainability:
Nein
 BibTeX