Die vorliegende Dissertation beschäftigt sich mit Flussvorgängen in porösen Medien, welche Hysterese in der Beziehung zwischen dem kapillaren Druck und der Sättigung der Phase aufweisen. Das Flussmodell basiert auf den Gesetzen von Darcy und der Massenerhaltung und ist an gemischte Randbedingungen vom Neumann- und Signorini-Typ gekoppelt. Ein Existenzresultat wird für den Fall hergeleitet, bei welchem das Materialgesetz durch einen Hysterese-Operator vom Preisach-Typ beschrieben wird. Außerdem wird auch ein Eindeutigkeitsresultat für den Fall bewiesen, bei welchem sich die Randbedingungen auf Dirichlet-Randbedingungen reduzieren.
«
Die vorliegende Dissertation beschäftigt sich mit Flussvorgängen in porösen Medien, welche Hysterese in der Beziehung zwischen dem kapillaren Druck und der Sättigung der Phase aufweisen. Das Flussmodell basiert auf den Gesetzen von Darcy und der Massenerhaltung und ist an gemischte Randbedingungen vom Neumann- und Signorini-Typ gekoppelt. Ein Existenzresultat wird für den Fall hergeleitet, bei welchem das Materialgesetz durch einen Hysterese-Operator vom Preisach-Typ beschrieben wird. Außerdem w...
»