User: Guest  Login
Original title:
Automating and Assisting Image Segmentation with Decision Forests
Translated title:
Automatierte und Assistierte Bildsegmentierung mit Random Forests
Author:
Peter, Loic
Year:
2017
Document type:
Dissertation
Faculty/School:
Fakultät für Informatik
Advisor:
Navab, Nassir (Prof. Dr.)
Referee:
Navab, Nassir (Prof. Dr.); Lepetit, Vincent (Prof. Dr.)
Language:
en
Subject group:
DAT Datenverarbeitung, Informatik; MED Medizin
TUM classification:
MED 230d; DAT 760d
Abstract:
This thesis aims at facilitating image segmentation objectives for both computer vision and medical applications. Building on the framework of decision forests, we (i) introduce an efficient and generic scale-adaptive forest training scheme for automatic image understanding, (ii) entangle segmentation with image exploration to examine large digital slides in histopathology, and (iii) model the segmentation task as a 20 Questions game towards hands-free human-computer interactions.
Translated abstract:
Diese Dissertation fokussiert sich auf Bildsegmentierung für allgemeines Bildverstehen und medizinische Anwendungen. Wir führen drei auf Random Forests basierende Beiträge ein: (i) eine Trainingsmethode, die informative visuelle Spannbreiten automatisch entdeckt, (ii) eine mit der Segmentierung kombinierten Navigationsstrategie durch riesige histologische Bilder, und (iii) eine Auffassung des Segmentierungsprozesses als ein „Wer bin ich?“-Spiel für handfreie Interaktionen mit einem Benutzer.
WWW:
https://mediatum.ub.tum.de/?id=1324871
Date of submission:
15.02.2017
Oral examination:
08.09.2017
File size:
18421745 bytes
Pages:
136
Urn (citeable URL):
https://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20170908-1324871-1-7
Last change:
08.05.2018
 BibTeX