BACKGROUND: Papillary cells adapt to their hyperosmotic environment by accumulating organic osmolytes and by enhanced synthesis of heat shock protein 70 (HSP70), which protect against high-solute concentrations. Because cyclooxygenase-2 (COX-2) is expressed abundantly in the renal papilla and is induced by dehydration, and because HSP70 expression is stimulated by specific prostaglandins, COX-2 inhibition may interfere with cellular osmoadaptation. METHODS: In vivo, rats received rofecoxib before water deprivation. Medullary expression of several tonicity-responsive genes was analyzed and apoptosis was monitored by transferase-mediated dUTP nick-end labeled (TUNEL) staining and determination of papillary caspase-3 activity. In vitro, inner medullary collecting duct 3 (IMCD3) cells were exposed to hypertonic medium containing a COX-2-specific inhibitor. Thereafter, expression of tonicity-responsive genes was analyzed and resistance to high-solute concentrations was examined. Further, the effect of Delta 12-PGJ2, a urinary prostaglandin, and of HSP70 overexpression on resistance against high urea concentration, was evaluated. RESULTS: Rofecoxib treatment significantly increased urine osmolality due to higher urea concentrations, but reduced papillary HSP70 abundance by 50%. TUNEL staining showed numerous apoptotic cells in the papilla, associated with increased caspase-3 activity. These in vivo results were confirmed by experiments on cultured IMCD3 cells, in which COX-2 inhibition impaired the tonicity-induced up-regulation of HSP70 expression and rendered the cells susceptible to high urea concentrations. Furthermore, Delta 12-PGJ2 increased both HSP70 expression and resistance against high urea, which was causally linked to higher HSP70 levels. CONCLUSION: These observations support the view that chronic COX-2 inhibition reduces medullary HSP70 expression, thus rendering papillary cells susceptible to damage by high urea concentrations, especially when accompanied by dehydration.
«
BACKGROUND: Papillary cells adapt to their hyperosmotic environment by accumulating organic osmolytes and by enhanced synthesis of heat shock protein 70 (HSP70), which protect against high-solute concentrations. Because cyclooxygenase-2 (COX-2) is expressed abundantly in the renal papilla and is induced by dehydration, and because HSP70 expression is stimulated by specific prostaglandins, COX-2 inhibition may interfere with cellular osmoadaptation. METHODS: In vivo, rats received rofecoxib befor...
»