User: Guest  Login
Title:

So2Sat LCZ42

Document type:
Forschungsdaten
Publication date:
28.09.2018
Authors:
Zhu, Xiaoxiang ; Hu, Jingliang ; Qiu, Chunping ; Shi, Yilei ; Bagheri, Hossein ; Kang, Jian ; Li, Hao ; Mou, Lichao ; Zhang, Guicheng ; Häberle, Matthias ; Han, Shiyao ; Hua, Yuansheng ; Huang, Rong ; Hughes, Lloyd ; Sun, Yao ; Schmitt, Michael; Wang, Yuanyuan
Author affiliation:
Zhu, Xiaoxiang (TUM, DLR); Hu, Jingliang (DLR); Qiu, Chunping (TUM); Shi, Yilei (TUM); Bagheri, Hossein (TUM); Kang, Jian (TUM); Li, Hao (TUM); Mou, Lichao (TUM); Zhang, Guicheng (TUM); Häberle, Matthias (DLR); Han, Shiyao (TUM); Hua, Yuansheng (TUM); Huang, Rong (TUM); Hughes, Lloyd (TUM); Sun, Yao (DLR); Schmitt, Michael (TUM); Wang, Yuanyuan (TUM)
Publisher:
TUM
Identifier:
doi:10.14459/2018MP1454690
End date of data production:
30.08.2018
Subject area:
BAU Bauingenieurwesen, Vermessungswesen; DAT Datenverarbeitung, Informatik; GEO Geowissenschaften
Resource type:
Abbildungen von Objekten / image of objects
Data type:
Bilder / images
Description:
So2Sat LCZ42 is a dataset consisting of co-registered synthetic aperture radar and multispectral optical image patches acquired by the Sentinel-1 and Sentinel-2 remote sensing satellites, and the corresponding local climate zones (LCZ) label. The dataset is distributed over 42 cities across different continents and cultural regions of the world.
Method of data assessment:
Sentinel-1 image downloaded from ESA SciHub, and prepared by ESA SNAP software. Sentinel-2 image semi-automatically downloaded and prepared using Google Earth Engine and MATLAB. The local climate zones labels were manually labeled.
Links:

This is version 1 of the dataset. See download link below
Link to version 2 (containing additional test data): https://mediatum.ub.tum.de/1483140
Link to version 3 (containing 2 more training testing splits): https://mediatum.ub.tum.de/1613658
A detailed description of this dataset, and its different versions: https://github.com/zhu-xlab/So2Sat-LCZ42

Key words:
local climate zones ; big data ; classification ; remote sensing ; deep learning ; data fusion ; synthetic aperture radar imagery ; optical imagery
Technical remarks:
View and download (51.8 GB, 6 files)
The data server also offers downloads with FTP
The data server also offers downloads with rsync (password m1454690):
rsync rsync://m1454690@dataserv.ub.tum.de/m1454690/
Language:
en
Rights:
by, http://creativecommons.org/licenses/by/4.0
Horizon 2020:
ERC-2016-StG-714087
 BibTeX