Our approach is to use fully three-dimensional models for both the fluid and the structure. For thin-walled structures, which are typically sensitive to loads resulting from the surrounding fluid, it will be shown that the use of high-order hexahedral elements with high aspect ratios is feasible. Furthermore, it will be demonstrated that three-dimensional elements of high order can be used very efficiently by choosing a high polynomial degree in in-plane direction and a low polynomial degree in thickness direction. By varying the polynomial degrees in the local directions of the elements, the choice of an appropriate structural model can be achieved in an adaptive way. This will be demonstrated by means of a numerical example.
«
Our approach is to use fully three-dimensional models for both the fluid and the structure. For thin-walled structures, which are typically sensitive to loads resulting from the surrounding fluid, it will be shown that the use of high-order hexahedral elements with high aspect ratios is feasible. Furthermore, it will be demonstrated that three-dimensional elements of high order can be used very efficiently by choosing a high polynomial degree in in-plane direction and a low polynomial degree in...
»