TRAF6 is a unique adaptor protein of the tumour necrosis factor receptor-associated factor family that mediates both tumour necrosis factor receptor (TNFR) and interleukin-1 receptor/Toll-like receptor (IL-1R/TLR) signalling. Activation of IL-1R/TLR and TNFR pathways in renal tubular cells contributes to renal injury. This study aimed to investigate if blockade of lipopolysaccharide (LPS)-triggered TLR4 signalling by small interfering RNA (siRNA) targeting TRAF6 protects survival and inhibits inflammatory response in isolated rat renal proximal tubular cells (PTCs).PTCs isolated from F344 rat kidneys were transfected with chemically synthesized siRNA targeting TRAF6 mRNA. Real-time quantitative PCR was applied to measure mRNA level of TRAF6, TNF-alpha, IL-6 and monocyte chemoattractant protein-1 (MCP-1). Protein levels of extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase, caspase 3 and cleaved caspase 3 were evaluated by Western blotting. Cell viability was analysed with XTT reagents.We found that the TRAF6 gene was effectively silenced in PTCs using siRNA. TRAF6 knockdown resulted in reduced TNF-alpha and IL-6 mRNA expression upon LPS challenge. LPS-induced phosphorylation of JNK and p38 was attenuated in TRAF6 siRNA-transfected cells while the change in the phosphorylation of ERK was not remarkable. TRAF6 knockdown was associated with increased cell viability and reduced protein level of cleaved caspase-3, both, in the absence and presence of LPS.Our studies suggest that TRAF6 knockdown may inhibit inflammatory response and promote cell survival upon LPS challenge in primary rat proximal renal tubular cells.
«