The low-energy physics of interacting quantum systems is typically understood through the identification of the relevant quasiparticles or low-energy excitations and their quantum numbers. We present a quantum information framework that goes beyond this to examine the nature of the entanglement in the corresponding quantum states. We argue that the salient features of the quasiparticles, including their quantum numbers, locality, and fractionalization, are reflected in the entanglement spectrum and in the mutual information. We illustrate these ideas in the specific context of the d=1 transverse field Ising model with an integrability breaking perturbation.
«
The low-energy physics of interacting quantum systems is typically understood through the identification of the relevant quasiparticles or low-energy excitations and their quantum numbers. We present a quantum information framework that goes beyond this to examine the nature of the entanglement in the corresponding quantum states. We argue that the salient features of the quasiparticles, including their quantum numbers, locality, and fractionalization, are reflected in the entanglement spectrum...
»