This report shows the influence of halide substituted Schiff-bases as ligands of methyltrioxorhenium (MTO) in epoxidation catalysis. Therefore, selected Schiff-bases were prepared by the reaction of hydroxy-benzaldehydes and aniline derivates. These differently substituted Schiff-bases were tested as MTO-ligands in cyclooctene- and 1-octene-epoxidation. Although no great disparities among the substitution patterns have been found, some conclusions can be drawn. Flourines are inferior to chlorines or bromines as substituents. Halides in ortho-position lead to higher activities than in para- or metaposition. The balance between electron donating and withdrawing influences at the Schiff-base plays a prominent role in their utility as ligand to MTO in epoxidation catalysis. (C) 2011 Published by Elsevier B.V.
«
This report shows the influence of halide substituted Schiff-bases as ligands of methyltrioxorhenium (MTO) in epoxidation catalysis. Therefore, selected Schiff-bases were prepared by the reaction of hydroxy-benzaldehydes and aniline derivates. These differently substituted Schiff-bases were tested as MTO-ligands in cyclooctene- and 1-octene-epoxidation. Although no great disparities among the substitution patterns have been found, some conclusions can be drawn. Flourines are inferior to chlorine...
»