Periodically driven quantum matter can realize exotic dynamical phases. In order to understand how ubiquitous and robust these phases are, it is pertinent to investigate the heating dynamics of generic interacting quantum systems. Here we study the thermalization in a periodically driven generalized Sachdev-Ye-Kitaev (SYK) model, which realizes a crossover from a heavy Fermi liquid (FL) to a non-Fermi liquid (NFL) at a tunable energy scale. Developing an exact field theoretic approach, we determine two distinct regimes in the heating dynamics. While the NFL heats exponentially and thermalizes rapidly, we report that the presence of quasiparticles in the heavy FL obstructs heating and thermalization over comparatively long timescales. Prethermal high-frequency dynamics and possible experimental realizations of nonequilibrium SYK physics are discussed as well.
«
Periodically driven quantum matter can realize exotic dynamical phases. In order to understand how ubiquitous and robust these phases are, it is pertinent to investigate the heating dynamics of generic interacting quantum systems. Here we study the thermalization in a periodically driven generalized Sachdev-Ye-Kitaev (SYK) model, which realizes a crossover from a heavy Fermi liquid (FL) to a non-Fermi liquid (NFL) at a tunable energy scale. Developing an exact field theoretic approach, we determ...
»