We study variable-rate linear quenches in the anisotropic Heisenberg (XXZ) chain, starting at the XX point. This is equivalent to switching on a nearest-neighbor interaction for hard-core bosons or an interaction quench for free fermions. The physical observables we investigate are the energy pumped into the system during the quench, the spin-flip correlation function, and the bipartite fluctuations of the z component of the spin in a box. We find excellent agreement between exact numerics (infinite system time-evolving block decimation) and analytical results from bosonization, as a function of the quench time, spatial coordinate, and interaction strength. This provides a stringent and much-needed test of Luttinger liquid theory in a nonequilibrium situation.
«
We study variable-rate linear quenches in the anisotropic Heisenberg (XXZ) chain, starting at the XX point. This is equivalent to switching on a nearest-neighbor interaction for hard-core bosons or an interaction quench for free fermions. The physical observables we investigate are the energy pumped into the system during the quench, the spin-flip correlation function, and the bipartite fluctuations of the z component of the spin in a box. We find excellent agreement between exact numerics (infi...
»