We study the phase diagram of the anisotropic spin-1 Heisenberg chain with single ion anisotropy (D) using a ground-state fidelity approach. The ground-state fidelity and its corresponding susceptibility are calculated within the quantum renormalization group scheme where we obtained the renormalization of fidelity preventing calculation of the ground state. Using this approach, the phase boundaries between the antiferromagnetic Néel, Haldane and large-D phases are obtained for the whole phase diagram, which justifies the application of quantum renormalization group to trace the symmetry-protected topological phases. In addition, we present numerical exact diagonalization (Lanczos) results in which we employ a recently introduced non-local order parameter to locate the transition from Haldane to large-D phase accurately.
«
We study the phase diagram of the anisotropic spin-1 Heisenberg chain with single ion anisotropy (D) using a ground-state fidelity approach. The ground-state fidelity and its corresponding susceptibility are calculated within the quantum renormalization group scheme where we obtained the renormalization of fidelity preventing calculation of the ground state. Using this approach, the phase boundaries between the antiferromagnetic Néel, Haldane and large-D phases are obtained for the whole phase d...
»